Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
Abstract Twice in the Cryogenian Period (720–635 Ma), during the Sturtian and Marinoan glaciations, ice sheets extended to equatorial latitudes for millions of years. These climate extremes have been interpreted to record the Snowball climate state, in which all of Earth’s oceans were covered with ice. During a Snowball Earth, the hydrological cycle would have been curtailed and silicate weathering greatly reduced. In this scenario, deep ocean chemistry should have evolved toward mantle values through hydrothermal exchange at mid-ocean ridges. Specifically, seawater strontium isotopes (87Sr/86Sr) are predicted to exhibit unradiogenic mantle-like values. However, cap carbonates that overlie the Cryogenian glacial deposits have yielded radiogenic 87Sr/86Sr values similar to those of seawater prior to glaciation, inconsistent with the central geochemical prediction of the Snowball Earth hypothesis. Here we report the discovery of 87Sr/86Sr values of 0.7034 in marine carbonate and authigenic barite that rest directly above Sturtian glacial deposits in Dhofar, Oman. These values record either a local unradiogenic source or Snowball Earth deep-water values that have not been previously identified. If it is a global signal, these new data and geochemical modeling support an extreme Snowball Earth scenario with near-complete ice cover and define one of the largest geochemical perturbations to seawater in Earth history.more » « lessFree, publicly-accessible full text available June 24, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Abstract We analyze how interdependencies in financial networks can lead to self-fulfilling insolvencies and multiple possible equilibrium outcomes. Multiplicity arises if a certain type of dependency cycle exists in the network. We show that finding the cheapest bailout policy that prevents self-fulfilling insolvencies is computationally hard, but that the optimal policy has intuitive features in some typical network structures. Leveraging indirect benefits ensures systemic solvency at a cost that never exceeds half of the overall shortfall. In core-periphery networks, it is optimal to bail out peripheral banks first as opposed to core banks.more » « less
-
Abstract Age-progressive seamount tracks generated by lithospheric motion over a stationary mantle plume have long been used to reconstruct absolute plate motion (APM) models. However, the basis of these models requires the plumes to move significantly slower than the overriding lithosphere. When a plume interacts with a convergent or divergent plate boundary, it is often deflected within the strong local mantle flow fields associated with such regimes. Here, we examined the age progression and geometry of the Samoa hotspot track, focusing on lava flow samples dredged from the deep flanks of seamounts in order to best reconstruct when a given seamount was overlying the mantle plume (i.e., during the shield-building stage). The Samoan seamounts display an apparent local plate velocity of 7.8 cm/yr from 0 to 9 Ma, 11.1 cm/yr from 9 to 14 Ma, and 5.6 cm/yr from 14 to 24 Ma. Current fixed and mobile hotspot Pacific APM models cannot reproduce the geometry of the Samoa seamount track if a long-term fixed hotspot location, currently beneath the active Vailulu’u Seamount, is assumed. Rather, reconstruction of the eruptive locations of the Samoan seamounts using APM models indicates that the surface expression of the plume migrated ~2° northward in the Pliocene. Large-scale mantle flow beneath the Pacific Ocean Basin cannot explain this plume migration. Instead, the best explanation is that toroidal flow fields—generated by westward migration of the Tonga Trench and associated slab rollback—have deflected the conduit northward over the past 2–3 m.y. These observations provide novel constraints on the ways in which plume-trench interactions can alter hotspot track geometries.more » « less
An official website of the United States government
